

# **VANNE À GUILLOTINE UNIDIRECTIONNELLE**

### **DESCRIPTION DU PRODUIT**

- Corps en fonte en une seule pièce avec des glissières pour supporter la pelle et les cales de blocage.
- Fournit de grands débits avec de faibles pertes de charge.
- Multiples matériaux d'étancheité et de bourrages disponibles.
- Distance entre les faces conformément au standard de CMO Valves.
- Dispose d'une flèche dans le corps qui indique la direction du fluide.

### **APPLICATIONS GÉNÉRALES**

Cette vanne à guillotine est appropriée pour des liquides possédant un maximum de 5% de solides en suspension. Si elle est employée pour décharger par gravité des solides secs, il est conseillé de l'installer avec la flèche du corps orientée vers la direction contraire du fluide.

Elle est conçue pour les applications suivantes:

- Industrie du papier
- Industrie minière
- Déchargement de silos
- Pompages
- Industrie alimentaire
- Traitement des eaux résiduelles

### **TAILLES**

DN80 à DN1200.

### PRESSION DE TRAVAIL ( $\triangle P$ )

| 10 bar |
|--------|
| 6 bar  |
| 5 bar  |
| 4 bar  |
| 3 bar  |
|        |

<sup>\*</sup> Autres pressions, contact.

Les pressions de travail que nous indiquons serrant valides que si la direction de la flèche est prise en considération. Suite au design de la vanne avec glissières pour la guillotine, une application de un 30% de ces pressions est admissible en sens contraire de la flèche. En ce cas-ci, la vanne n'est pas étanche dans un 100%. Pour obtenir une étanchéité totale est nécessaire d'incorporer des supports additionnels.

### **BRIDES STANDARD**

- EN1092 PN10.
- ASME B16.5 (clase 150).

# AUTRES RACCORDEMENTS

- PN6
- PN16.
- PN25.
- BS "D" et "E".
- JIS10K.



# APPLICATION SOUS DIRECTIVES EUROPEENNNES

Voir document des directives applicables à CMO Valves.

### **DOSSIER DE QUALITÉ**

Toutes les vannes sont testées hydrostatiquement selon **CMO Valves** et il est possible de fournir les certificats correspondants des matériaux et des essais effectués.

- Essai du corps = pression de travail x 1,5
- Essai de l'opercule = pression de travail x 1,1

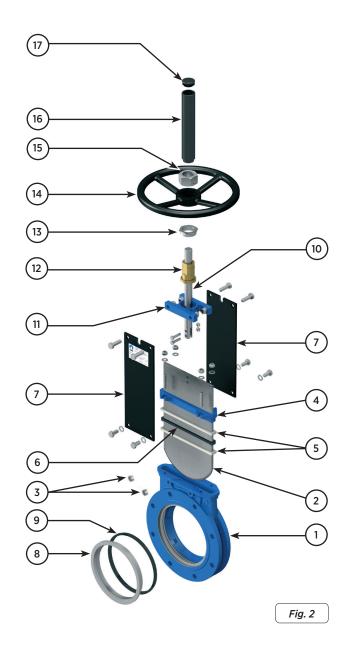
<sup>\*</sup> Dimensions supérieures sur commande.

<sup>\*</sup> Autres, contact.

<sup>\*</sup> Pour plus d'information sur les catégories et les zones, veuillez contacter le département technico-commercial de **CMO Valves.** 

### **AVANTAGES**

Lorsqu'une vanne à guillotine reste ouverte pendant de longues périodes et que les parois internes du corps sont parallèles, il faut installer un couple très grand pour pouvoir la fermer. L'intérieur du corps du **modèle AD** présente une forme conique, ce qui fournit plus d'espace. De cette façon, lorsque la vanne est fermée, les solides stockés à l'intérieur peuvent être facilement libérés.


Cette vanne est définie comme unidirectionnelle et, dans le cas des vannes de ce type, il existe le danger que la pelle se plie à cause de l'existence d'une pression contre elle. Ceci ne peut pas se produire avec la vanne **CMO Valves**, car le corps est intérieurement muni de glissières qui supportent la pelle et qui permettent de travailler sous une contrepression de 30% de la pression de travail maximale, sans que la vanne à pelle se plie. Le capuchon de protection de la tige est indépendant de l'écrou de fixation du volant, c'est pourquoi il est possible de démonter le capuchon sans besoin de lâcher complètement le volant. Cet avantage permet de réaliser des opérations de maintenance comme le graissage de la broche, etc.

La tige de la vanne **CMO Valves** est conçue en acier inoxydable **AISI 304**. Il s'agit d'un avantage supplémentaire, puisque certains fabricants la fournissent avec 13% de chrome et elle s'oxyde rapidement. Le volant est fabriqué en **ACIER**. Certains fabricants le fournissent en fonte normale, ce qui peut provoquer sa cassure en cas d'un couple de manœuvre très élevé ou d'un coup.

Le pont de manoeuvre est fabriqué avec un dessin compact avec écrou d'actionement en bronze protégé dans une boîte fermée et huilée. Cela permett le déplacement de la vanne avec une clé, même sans volant (chez d'autres fabricatns ce n'est pas possible).

### LISTE DES COMPOSANTS STANDARD

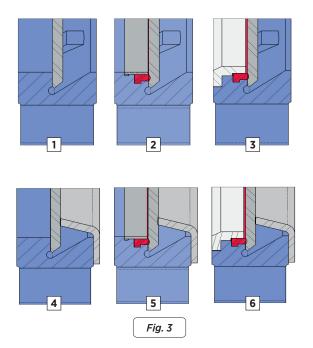
| CO | MPOSANT                | VERSION<br>NODULAIRE | VERSION INOX |  |  |  |
|----|------------------------|----------------------|--------------|--|--|--|
| 1  | CORPS                  | GJS500-7             | CF8M         |  |  |  |
| 2  | PELLE                  | AISI304              | AISI316      |  |  |  |
| 3  | GLISSIÈRE              | PA6                  |              |  |  |  |
| 4  | PRESSE-ÉTOUPE          | GJS500-7             | CF8M         |  |  |  |
| 5  | BOURRAGE               | SYNT + PTFE          | SYNT + PTFE  |  |  |  |
| 6  | JOINT                  | EP                   | DM           |  |  |  |
| 7  | PLAQUES<br>SUPPORT     | S27                  | 5JR          |  |  |  |
| 8  | BAGUE                  | AIS                  | 1316         |  |  |  |
| 9  | SIÈGE                  | EP                   | DM           |  |  |  |
| 10 | TIGE                   | AISI                 | 303          |  |  |  |
| 11 | PONT                   | AC                   | IER          |  |  |  |
| 12 | ÉCROU BROCHE           | BRO                  | NZE          |  |  |  |
| 13 | CONTRE-ÉCROU           | ST44.2               | + ZINC       |  |  |  |
| 14 | VOLANT                 | AC                   | IER          |  |  |  |
| 15 | ÉCROU                  | AC                   | IER          |  |  |  |
| 16 | CAPUCHON               | AC                   | IER          |  |  |  |
| 17 | COUVERCLE<br>SUPÉRIEUR | PLAS                 | TIQUE        |  |  |  |
|    |                        |                      |              |  |  |  |



# CARACTÉRISTIQUES DE CONCEPTION

### 1. CORPS

- Vanne à guillotine, unidirectionnelle, avec conception wafer. Corps en fonte en une seule pièce avec des glissières pour supporter la pelle et les cales de blocage.
- Pour des diamètres supérieurs à DN1200, la construction du corps est mécano-soudée avec les renforts nécessaires pour résister à la pression de travail maximale. Conception avec un passage total pour fournir de grands débits avec de faibles pertes de charge.
- La conception interne du corps évite le stockage de solides dans la zone de blocage.
- Les matériaux de fabrication standard sont en fonte GJS500-7 et en acier inoxydable CF8M. D'autres matériaux sont également disponibles sur commande, notamment la fonte nodulaire GJS500-7, l'acier au carbone A216WCB et les alliages en acier inoxydable (AISI316Ti, Duplex, 254SMO, Uranus B6...).
- Généralement, les vannes en fonte ou en acier au carbone sont peintes avec une protection anticorrosive de 80 microns d'EPOXY (couleur RAL 5015). Il existe en outre d'autres types de protections anticorrosives.


### 2. PELLE

Les matériaux de fabrication standard sont l'acier inoxydable AISI304 pour les vannes avec un corps en fonte et l'acier inoxydable AISI316 pour les vannes avec un corps en CF8M. D'autres matériaux ou combinaisons peuvent être fournis sur commande.

La pelle est fournie polie des deux côtés pour offrir une surface de contact douce avec le joint d'étanchéité. D'autre part, la pelle est arrondie pour éviter de couper le joint. Il existe différents degrés de polissage, de traitements anti-abrasifs et de modifications pour adapter les vannes aux besoins et demandes du client. nes para adaptar las válvulas a los requerimientos del cliente.

## 3. SIÈGE

Il existe six types de siège en fonte de l'application de travail:



### MATÉRIAUX DU JOINT D'ÉTANCHÉITÉ

### **EPDM**

Il s'agit du joint d'étanchéité standard des vannes **CMO Valves** Il peut être employé sur de multiples applications, mais s'utilise généralement pour l'eau et les produits dilués dans de l'eau à des températures inférieures à 90°C\*. Il peut également être utilisé avec des produits abrasifs et fournit à la vanne une étanchéité de 100%.

### **NITRILE**

Il s'utilise dans des fluides contenant des graisses ou des huiles à des températures inférieures à 90°C\*. Fournit à la vanne une étanchéité de 100%.

### **FKM**

Approprié pour les applications corrosives et les hautes températures de jusqu'à 190°C en continu et avec des pics de 210°C. Fournit à la vanne une étanchéité de 100%.

### **SILICONE**

Principalement employée dans l'industrie alimentaire et pour les produits pharmaceutiques, à des températures non supérieures à 200°C. Fournit à la vanne une étanchéité de 100%.

### **PTFE**

Approprié pour des applications corrosives et des PH entre 2 et 12. Ne fournit pas à la vanne une étanchéité de 100%. Fuite estimée: 0,5% du débit dans les tuyaux.

### SIÈGE 1

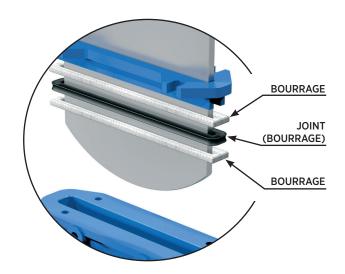
**Etancheité métal / métal.** Ce type de blocage n'inclut aucun type de joint d'étanchéité et la fuite estimée (en considérant l'eau comme fluide d'essai) est de 1,5% du débit dans les tuyaux.

### SIÈGE 2

**Etancheité métal / élastomère.** Ce type de blocage inclut un joint d'étanchéité fixé intérieurement au corps avec une bague de maintien fabriquée en AISI316.

### SIÈGE 3

**Etancheité métal / élastomère avec bague renforcée.** Ce type de blocage inclut un joint d'étanchéité fixé intérieurement au corps avec une bague renforcée munie de deux fonctions (protéger la vanne de l'abrasion et nettoyer la vanne à pelle lorsqu'elle travaille avec des solides qui risquent d'adhérer à la pelle).


### SIÈGES 4 / 5 / 6

Ils sont pareils que les sièges 1, 2 et 3, mais ils incluent un déflecteur. Le déflecteur est une bague de forme conique placée à l'entrée de la vanne et qui inclut deux fonctions (protéger la vanne de l'abrasion et guider le fluide vers le centre de la vanne).

**Remarque:** Certaines applications emploient d'autres types d'élastomère, comme l'hypalon, le butyle ou l'élastomère naturel.

### 4. BOURRAGE

Le bourrage standard de **CMO Valves** est composé de trois lignes avec un joint de conception spéciale en EPDM sur la moitié qui fournit l'étanchéité entre le corps et la vanne à pelle, en évitant tout type de fuite à l'atmosphère. Il se situe sur une zone facilement accessible et peut être remplacé sans démonter la vanne de la ligne. Nous indiquons ci-dessous plusieurs types de bourrage disponibles en fonction de l'application sur laquelle la vanne est située:



### 1. SYNTHÉTIQUE + PTFE

Ce bourrage est composé de fibres synthétiques tressées imprégnées intérieurement et extérieurement de PTFE par vidange. Il s'agit d'un bourrage à usage général sur des applications hydrauliques, dans les pompes ou les vannes et dans tout type de fluides, notamment les plus corrosifs, y compris les huiles concentrées et oxydantes. Il est également employé dans les liquides avec des particules en suspension.

### 2. COTON SUIFFE

Ce bourrage est composé de fibres en coton tressé imprégnées intérieurement et extérieurement de graisse. Il s'agit d'un bourrage à usage général sur des applications hydrauliques: pompes et vannes.

### 3. COTON SEC

Ce bourrage est composé de fibres en coton. Il s'agit d'un bourrage à usage général sur des applications avec des solides.

### 4. COTON + PTFE

Ce bourrage est composé de fibres en coton tressé imprégnées intérieurement et extérieurement de PTFE. Il s'agit d'un bourrage à usage général sur des applications hydrauliques: pompes et vannes.

### 5. GRAPHITE

Ce bourrage est composé de fibres en graphite de grande pureté. Le système tressé est diagonal et il est imprégné de graphite et de lubrifiant pour aider à réduire la porosité et améliorer ses prestations. Il est employé sur un large éventail d'applications étant donné que le graphite est résistant à la vapeur, à l'eau, aux huiles, aux dissolvants alcalins et à la plupart des acides.

### 6. FIBRE CÉRAMIQUE

Ce bourrage est composé de fibres en matériel céramique. Ses principales applications sont avec de l'air ou des gaz à de hautes températures et à de basses pressions.

|              | SIÈGE       | JOINTS                                  |                    | BOURRA | GE       |      |
|--------------|-------------|-----------------------------------------|--------------------|--------|----------|------|
| MATÉRIEL     | Tª MÁX (ºC) | APPLICATIONS                            | MATÉRIEL           | P(Bar) | Tª. MÁX  | рН   |
| Métal/Métal  | >250        | Haute température/<br>faible étancheité | Coton suiffé       | 10     | 100      | 6-8  |
| EPDM (E)     | 90*         | Acides et huiles non min.               | Coton sec (AS)     | 0.5    | 100      | 6-8  |
| Nitrile (N)  | 90*         | Hydrocarbures, huiles et graisses       | Coton + PTFE       | 30     | 120      | 6-8  |
| FKM (V)      | 200         | Hydrocarbures et dissolvants            | Synthétique + PTFE | 100    | -200+270 | 0-14 |
| Silicone (S) | 200         | Produits Alimentaires                   | Graphite           | 40     | 650      | 0-14 |
| PTFE (T)     | 250         | Résistant à la corrosion                | Fibre Céramique    | 0.3    | 1400     | 0-14 |

Noter: Plus de détails et autres matériaux sur demande.

\* EPDM et Nitrile: c'est possible jusqu'à Tª Max : 120°C sur demande

### 5. TIGE

La tige des vannes **CMO Valves** est conçue en acier inoxydable AISI 304. Cette caractéristique lui fournit une haute résistance et d'excellentes propriétés face à la corrosion. La conception de la vanne peut être envisagée avec une tige montante ou non montante. Lorsque la tige montante est nécessaire, elle est fournie avec un capuchon qui protège la tige du contact avec la poussière et la saleté et qui maintient également sa lubrification.

### 6. PRESSE-ÉTOUPE

Le presse-étoupe permet d'appliquer une force et une pression uniforme sur le bourrage pour assurer l'étanchéité. Les vannes avec un corps en fonte incluent généralement un presse-étoupe fabriqué en GJS500-7, alors que les vannes avec un corps en acier inoxydable en incluent un en CF8M.

### 7. ACTIONNEMENTS

Il est possible de fournir tout type d'actionnements, avec l'avantage que la conception de **CMO Valves** est complètement échangeable. Ce design permet au client de changer l'actionnement par lui-même et il n'est normalement pas nécessaire d'utiliser d'accessoires de montage supplémentaires. Une caractéristique de la conception des vannes de **CMO Valves** c'est que tous les actionnements sont échangeables entre eux.

# Manuels Volant (\*) Volant à chaîne (\*) Levier Réducteur Autres (tableau de commande...) Disponibilité des Accessoires Butées mécaniques Dispositifs de blocage Actionnement manuel de secours Électrovannes Positionneurs Fins de course Détecteurs de proximité Colonne de manœuvre droite (fig. 4)

Colonne de manœuvre inclinée (fig. 5)

### **Automatiques**

Actionneur électrique (\*)


Vérin pneumatique D/E y S/E

Vérin hydraulique.

(\*) On peut fabriquer cet actionement a version tige montante ou tige non montante.



Les allongements de tige ont également été développés, permettant d'agir depuis des positions éloignées de l'emplacement de la vanne, pour s'adapter à tous les besoins. Il est conseillé de consulter préalablement nos techniciens.



### **ACCESSOIRES ET OPTIONS**

Il existe différents types d'accessoires pour adapter la vanne aux conditions de travail spécifiques, comme:

### **PELLE POLIE MIROIR**

La pelle polie miroir est spécialement recommandée pour l'industrie alimentaire, ainsi que, comme norme générale, pour les applications dans lesquelles les solides peuvent se coller sur la vanne. C'est une alternative pour que les solides glissent et n'adhèrent pas à la vanne à pelle.

### PELLE RECOUVERTE DE PTFE

De même que la vanne à pelle polie miroir, elle améliore les prestations de la vanne face aux produits pouvant adhérer à la vanne à pelle.

### **PELLE STELLITÉE**

Apport de stellite sur le périmètre inférieur de la vanne à pelle pour la protéger de l'abrasion.

### **RACLEUR DANS LE BOURRAGE**

Sa fonction est de nettoyer la vanne à pelle pendant le mouvement d'ouverture et éviter de possibles dommages sur le bourrage.

### INJECTIONS D'AIR DANS LE BOURRAGE

À travers l'injection d'air dans le bourrage, une chambre à air est créée pour améliorer l'étanchéité.

### **CORPS CHEMISÉ**

Il est conseillé sur les applications dans lesquelles le fluide risque de se durcir et de se solidifier dans le corps de la vanne. Une chemise extérieure dans le corps maintient la température de ce dernier à un niveau constant, dans le but d'éviter la solidification du fluide.

### SUPPORT D'ACTIONNEMENT OU PONT

De fabrication robuste, en acier (ou acier inoxydable sur commande) et recouvert d'EPOXY, il fournit une grande rigidité et supporte par conséquent les conditions d'opération les plus adverses.

### FINS DE COURSE MÉCANIQUES, DÉTECTEURS INDUCTIFS ET POSITIONNEURS

Installation de fins de course ou de détecteurs pour une indication de la position ponctuelle de la vanne et de positionneurs pour indiquer la position continue.

### ÉLECTROVANNES

Pour une distribution d'air dans les actionnements pneumatiques.

### BOÎTIERS DE CONNEXION, CÂBLAGE ET TUBAGE PNEUMATIQUE

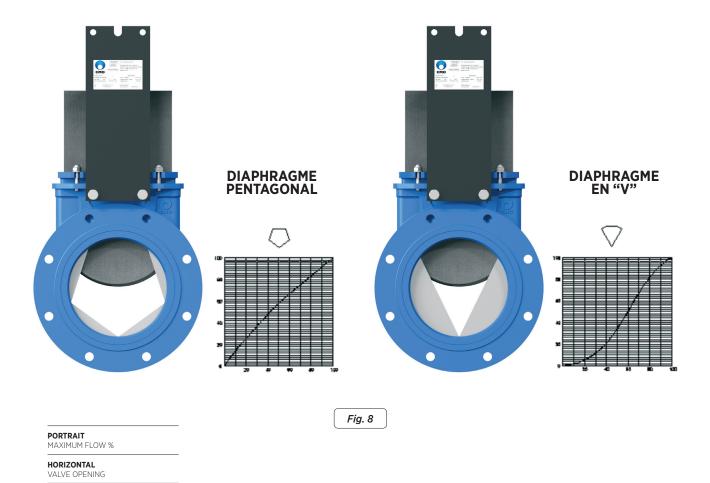
Es posible suministrar unidades completamente montadas con todos los accesorios necesarios.

# LIMITEURS DE COURSE MÉCANIQUES (BUTÉES MÉCANIQUES)

Permettent de régler mécaniquement la course, en limitant le parcours désiré de la vanne.

### SYSTÈME DE BLOCAGE MÉCANIQUE

Il permet de bloquer mécaniquement la vanne sur une position fixe pendant de longues périodes.


# ACTIONNEMENT MANUEL DE SECOURS (VOLANT / RÉDUCTEUR)

Permet d'agir manuellement sur la vanne en cas de manque d'énergie ou d'air.

### **INSUFFLATIONS DANS LE CORPS**

Possible de réaliser plusieurs trous dans le corps pour insuffler de l'air, de la vapeur ou d'autres fluides et nettoyer ainsi le siège de la vanne avant sa fermeture.





# DIAPHRAGME PENTAGONAL ET EN "V" AVEC REGLE D'INDICATION

Conseillé pour les applications nécessitant un réglage de débit. Il permet de contrôler le débit en fonction du pourcentage d'ouverture de la valve.

### INTERCHANGEABILITÉ DES ACTIONNEMENTS

Tous les actionnements sont facilement interchangeables.

### **RECOUVREMENT D'ÉPOXY**

Tous les corps et composants en fonte et en acier au carbone des vannes **CMO Valves** sont recouverts d'une couche d'ÉPOXY, qui leur confère une grande résistance à la corrosion et une excellente finition superficielle.

La couleur standard de **CMO Valves** est le bleu, RAL-5015.

### PROTECTIONS DE SÉCURITÉ POUR LA PELLE

Conformément à la règlementation européenne de sécurité (marquage "CE"), les vannes automatiques **CMO Valves** sont munies de protections métalliques sur le parcours de la pelle, dans le but d'éviter qu'un corps ou objet quelconque puisse être accidentellement attrapé ou entraîné.accidentalmente atrapado o arrastrado.

### **TYPES D'EXTENSIONS**

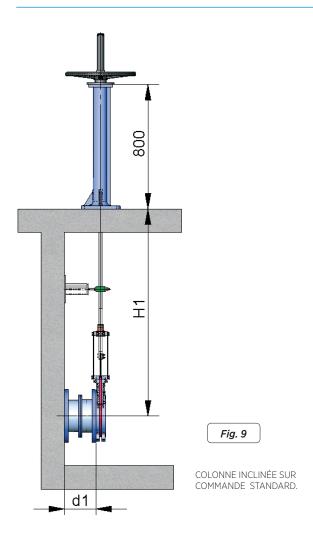





Fig. 10

SUPPORT-GUIDE DE TIGE

### **LISTE DE COMPOSANTS**

| COMPOSANT     | VERSION STANDARD                         |
|---------------|------------------------------------------|
| Tige          | AISI 304                                 |
| Tige          | AISI 304                                 |
| Support-Guide | Acier au carbone avec recouvrement ÉPOXY |
| Glissière     | PA6                                      |
| Colonne       | GJS500-7 avec recouvrement ÉPOXY         |

Tableau 3

### 1.- COLONNE DE MANŒUVRE

Cet allongement se réalise en assemblant une vis à la tige. En définissant la longueur de la vis, nous obtenons la mesure d'extension désirée. Une colonne de manœuvre est normalement incorporée pour supporter l'actionnement.

Les variables de définition sont :

H1 = Distance du centre de la vanne à la base de la colonne

d1 = Séparation depuis la paroi jusqu'à la fin de la bride de connexion

### **CARACTÉRISTIQUES:**

- Peut être raccordé sur tout type d'actionnement.
- Un support-guide de tige est recommandé tous les 1,5m
- La colonne de manœuvre standard est de 800 mm de hauteur
- Possibilité de mise en place d'une réglette d'indication pour connaître le degré d'ouverture de la vanne.
- Colonne inclinée sur demande.
- D'autres mesures de colonne sur demande.

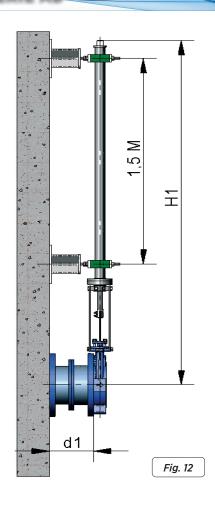


COLONNE INCLINÉE.

Fig. 11

### 2.- TUYAU

Consiste à élever l'actionnement. Le tube tournera solidairement au volant lorsque la vanne est activée. Cette dernière restera toujours à la même hauteur.


Les variables de définition sont:

H1 = Distance du centre de la vanne à la base de la colonne

**D1 =** Séparation depuis la paroi jusqu'à la fin de la bride de connexion

### **CARACTÉRISTIQUES:**

- · Actionnements standard: Volant et «Carré».
- Un support-guide du tuyau est recommandé tous les 1,5 m.
- Les matériaux standards sont: Acier au carbone avec recouvrement ÉPOXY ou acier inoxydable.



# **3.- PLAQUES SUPPORT ALLONGÉES**

Lorsqu'il s'agit d'une petite extension, il est possible de prolonger les plaques de support. Pour renforcer la structure des plaques support, il est possible de placer un pont intermédiaire.

Fig. 13



### 4.- CARDAN

Fig. 14

S'il existe un défaut d'alignement entre la vanne et l'actionnement, nous pouvons résoudre ce problème en plaçant une articulation type cardan.

Cette option n'est valable que pour les actionnements à tige non montante.



# **VOLANT AVEC TIGE MONTANTE**

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement).

**P = hauteur max.** de la vanne (sans actionnement).

### **OPTIONS:**

- Système de blocage
- Extensions: colonne, tube, plaques...
- DN supérieurs à ceux signalés sur le tableau

### **ACTIONNEMENT COMPOSÉ DE:**

- Volant
- Tige
- Écrou
- Capuchon de protection pour la tige

### **DISPONIBLE:**

- DN80 à DN1200.
- À partir de DN600, l'actionnement est avec réducteur.

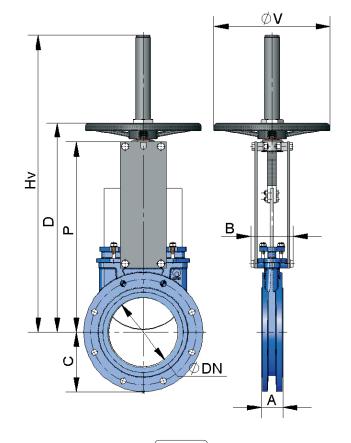



Fig. 15

| DN   | ∆P (bar) | Α   | В   | С     | Р    | Hv   | D    | øV  | POIDS (kg.) |
|------|----------|-----|-----|-------|------|------|------|-----|-------------|
| 80   | 10       | 50  | 92  | 100   | 294  | 469  | 333  | 225 | 12          |
| 100  | 10       | 50  | 92  | 114,5 | 334  | 502  | 373  | 225 | 14          |
| 125  | 10       | 50  | 102 | 127   | 367  | 585  | 406  | 225 | 17          |
| 150  | 10       | 60  | 102 | 142,5 | 419  | 644  | 458  | 225 | 21          |
| 200  | 10       | 60  | 119 | 171,5 | 525  | 815  | 578  | 325 | 32          |
| 250  | 10       | 70  | 119 | 203   | 626  | 1016 | 679  | 325 | 50          |
| 300  | 6        | 70  | 119 | 242,5 | 726  | 1116 | 779  | 380 | 70          |
| 350  | 6        | 96  | 290 | 267,5 | 797  | 1336 | 906  | 450 | 112         |
| 400  | 6        | 100 | 290 | 297,5 | 903  | 1442 | 1012 | 450 | 138         |
| 450  | 5        | 106 | 290 | 320   | 989  | 1628 | 1098 | 450 | 188         |
| 500  | 4        | 110 | 290 | 357,5 | 1101 | 1738 | 1210 | 450 | 219         |
| 600  | 4        | 110 | 290 | 420   | 1307 | 2046 | 1416 | 450 | 300         |
| 700  | 3        | 110 | 320 | 455   | 1506 |      |      |     | 483         |
| 800  | 3        | 110 | 320 | 505   | 1720 |      |      |     | 616         |
| 900  | 3        | 110 | 320 | 585   | 1953 |      |      |     | 790         |
| 1000 | 3        | 110 | 320 | 615   | 2137 |      |      |     | 983         |
| 1200 | 3        | 150 | 340 | 730   | 2616 |      |      |     | 1420        |

<sup>\*</sup> Autres TAILLES sur commande.

# **VOLANT À TIGE NON MONTANTE**

Adéquat lorsqu'il existe des limitations dimensionnelles.

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement).

**P = hauteur max.** de la vanne (sans actionnement).

### **OPTIONS:**

- Carré de manœuvre
- Système de blocage
- Extensions : colonne, tube, plaques...
- DN supérieurs à ceux signalés sur le tableau

### **ACTIONNEMENT COMPOSÉ DE:**

- Volant
- Tige
- Douilles guide sur le pont
- Écrou



- DN80 à DN1200.
- À partir de DN600, l'actionnement est avec réducteur.

| $\bigcirc$ V |
|--------------|
| B            |
| DN A         |

AN

Fig. 16

| DN   | ΔP (bar) | Α   | В   | С     | Р    | D    | øV  | POIDS (kg.) |
|------|----------|-----|-----|-------|------|------|-----|-------------|
| 80   | 10       | 50  | 101 | 100   | 294  | 333  | 225 | 12          |
| 100  | 10       | 50  | 101 | 114,5 | 334  | 373  | 225 | 14          |
| 125  | 10       | 50  | 111 | 127   | 367  | 407  | 225 | 17          |
| 150  | 10       | 60  | 111 | 142,5 | 419  | 458  | 225 | 21          |
| 200  | 10       | 60  | 128 | 171,5 | 525  | 578  | 325 | 34          |
| 250  | 10       | 70  | 128 | 203   | 626  | 679  | 325 | 50          |
| 300  | 6        | 70  | 128 | 242,5 | 726  | 779  | 380 | 67          |
| 350  | 6        | 96  | 305 | 267,5 | 797  | 906  | 450 | 111         |
| 400  | 6        | 100 | 305 | 297,5 | 903  | 1012 | 450 | 148         |
| 450  | 5        | 106 | 305 | 320   | 989  | 1098 | 450 | 186         |
| 500  | 4        | 110 | 305 | 357,5 | 1101 | 1210 | 450 | 221         |
| 600  | 4        | 110 | 305 | 420   | 1307 | 1416 | 450 | 300         |
| 700  | 3        | 110 | 335 | 455   | 1506 |      |     | 477         |
| 800  | 3        | 110 | 335 | 505   | 1720 |      |     | 628         |
| 900  | 3        | 110 | 335 | 585   | 1953 |      |     | 794         |
| 1000 | 3        | 110 | 335 | 615   | 2137 |      |     | 987         |
| 1200 | 3        | 150 | 355 | 730   | 2616 |      |     | 1420        |

<sup>\*</sup> Autres TAILLES sur commande.

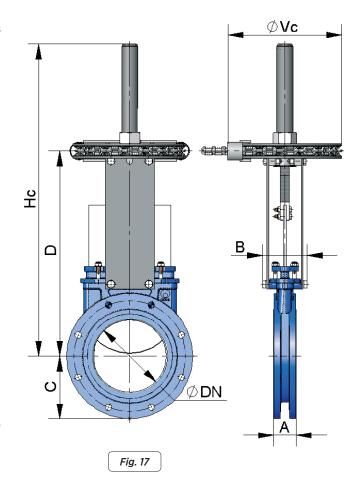
# **VOLANT à CHAÎNE**

Très utilisé dans des installations élevées avec des accès compliqués. Le volant se place en position verticale.

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement)

### **OPTIONS:**


- Systéme de blocage
- Extensions : colonne, tube, plaques...
- Tige non montante
- DN supérieurs à ceux signalés sur le tableau.

### **COMPOSÉ DE:**

- Volant
- Tige
- Écrou
- Capuchon

### **DISPONIBLE:**

- DN80 à DN1200.
- À partir de DN600, l'actionnement est avec réducteur,



| DN   | ∆P (bar) | A   | В   | С     | D    | Нс   | øVc | POIDS (kg.) |
|------|----------|-----|-----|-------|------|------|-----|-------------|
| 80   | 10       | 50  | 92  | 100   | 317  | 469  | 225 | 12          |
| 100  | 10       | 50  | 92  | 114,5 | 357  | 502  | 225 | 14          |
| 125  | 10       | 50  | 102 | 127   | 390  | 585  | 225 | 17          |
| 150  | 10       | 60  | 102 | 142,5 | 442  | 644  | 225 | 21          |
| 200  | 10       | 60  | 119 | 171,5 | 551  | 815  | 300 | 34          |
| 250  | 10       | 70  | 119 | 203   | 652  | 1016 | 300 | 50          |
| 300  | 6        | 70  | 119 | 242,5 | 752  | 1116 | 300 | 67          |
| 350  | 6        | 96  | 290 | 267,5 | 879  | 1336 | 402 | 111         |
| 400  | 6        | 100 | 290 | 297,5 | 985  | 1442 | 402 | 148         |
| 450  | 5        | 106 | 290 | 320   | 1071 | 1628 | 402 | 186         |
| 500  | 4        | 110 | 290 | 357,5 | 1183 | 1738 | 402 | 221         |
| 600  | 4        | 110 | 290 | 420   | 1389 | 2046 | 402 | 300         |
| 700  | 3        | 110 | 320 | 455   | 1506 | 2406 | 402 | 477         |
| 800  | 3        | 110 | 320 | 505   | 1720 | 2790 | 402 | 628         |
| 900  | 3        | 110 | 320 | 585   | 1953 | 3130 | 402 | 794         |
| 1000 | 3        | 110 | 320 | 615   | 2137 | 3440 | 402 | 987         |
| 1200 | 3        | 150 | 340 | 730   | 2616 | 4050 | 402 | 1420        |

<sup>\*</sup> Autres TAILLES sur commande.

# **LEVIER**

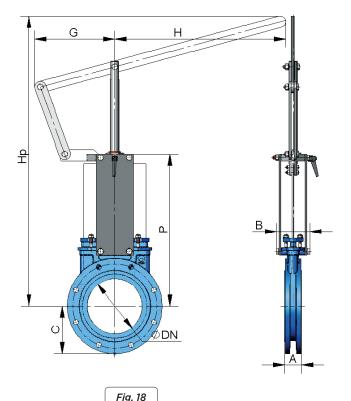
Actionnement de manœuvre rapide

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement)

**D = hauteur max.** de la vanne (sans actionnement)

### **OPTIONS:**


- Bloqueurs
- Extensions: plaques allongées

### **COMPOSÉ DE:**

- Levier
- Tige
- Douille guide
- Systéme de blocage externe, pour maintenir la position.

### **DISPONIBLE:**

DN 80 à DN 300



| l | rıg. | 10 |
|---|------|----|
|   |      |    |
|   |      |    |
|   |      |    |

| DN  | ∆P (bar) | A  | В   | С     | P   | G   | н   | Нр   | POIDS (kg.) |
|-----|----------|----|-----|-------|-----|-----|-----|------|-------------|
| 80  | 10       | 50 | 92  | 100   | 317 | 155 | 325 | 549  | 13          |
| 100 | 10       | 50 | 92  | 114,5 | 357 | 155 | 325 | 605  | 14          |
| 125 | 10       | 50 | 102 | 127   | 390 | 155 | 425 | 902  | 18          |
| 150 | 10       | 60 | 102 | 142,5 | 442 | 155 | 425 | 956  | 20          |
| 200 | 10       | 60 | 119 | 171,5 | 551 | 290 | 620 | 1027 | 37          |
| 250 | 10       | 70 | 119 | 203   | 652 | 290 | 620 | 1416 | 64          |
| 300 | 6        | 70 | 119 | 242,5 | 752 | 290 | 620 | 1525 | 71          |

<sup>\*</sup> Autres TAILLES sur commande.

# **RÉDUCTEUR**

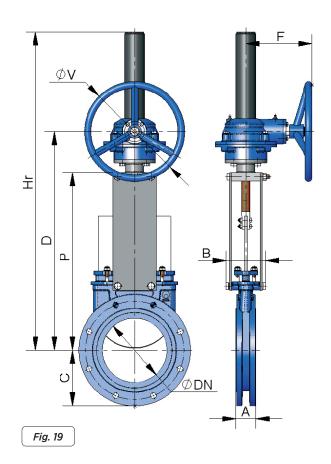
Recommandé pour DN supérieurs à 600.

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement)

**P = hauteur max.** de la vanne (sans actionnement)

### **OPTIONS:**


- Volant avec chaîne
- Bloqueurs
- Extensions: colonne, tube, plaques...
- Broche non ascendante

### **ACTIONNEMENT COMPOSÉ DE:**

- Tige
- Pont
- Réducteur conique
- Volant
- Ratio de réduction standard = 4 à 1.

### **DISPONIBLE:**

• DN 80 à DN 2000



| DN   | ∆P (bar) | Α   | В   | С     | P    | D    | F   | øV  | Hr   | POIDS (kg.) |
|------|----------|-----|-----|-------|------|------|-----|-----|------|-------------|
| 80   | 10       | 50  | 92  | 100   | 294  | 418  | 198 | 300 | 592  | 21          |
| 100  | 10       | 50  | 92  | 114,5 | 334  | 458  | 198 | 300 | 632  | 23          |
| 125  | 10       | 50  | 102 | 127   | 367  | 491  | 198 | 300 | 665  | 28          |
| 150  | 10       | 60  | 102 | 142,5 | 419  | 543  | 198 | 300 | 717  | 30          |
| 200  | 10       | 60  | 119 | 171,5 | 525  | 648  | 198 | 300 | 942  | 55          |
| 250  | 10       | 70  | 119 | 203   | 626  | 749  | 198 | 300 | 1043 | 73          |
| 300  | 6        | 70  | 119 | 242,5 | 726  | 850  | 198 | 300 | 1194 | 91          |
| 350  | 6        | 96  | 290 | 267,5 | 797  | 891  | 218 | 450 | 1335 | 124         |
| 400  | 6        | 100 | 290 | 297,5 | 903  | 997  | 218 | 450 | 1441 | 156         |
| 450  | 5        | 106 | 290 | 320   | 989  | 1083 | 218 | 450 | 1677 | 199         |
| 500  | 4        | 110 | 290 | 357,5 | 1101 | 1195 | 218 | 450 | 1789 | 244         |
| 600  | 4        | 110 | 290 | 420   | 1307 | 1401 | 218 | 450 | 2045 | 320         |
| 700  | 3        | 110 | 320 | 455   | 1506 | 1612 | 260 | 450 | 2401 | 472         |
| 800  | 3        | 110 | 320 | 505   | 1720 | 1825 | 288 | 650 | 2715 | 663         |
| 900  | 3        | 110 | 320 | 585   | 1953 | 2055 | 288 | 650 | 3043 | 822         |
| 1000 | 3        | 110 | 320 | 615   | 2137 | 2246 | 288 | 650 | 3351 | 1034        |
| 1100 | 3        | 150 | 340 | 670   | 2375 | 2515 | 352 | 850 | 3675 | 1207        |
| 1200 | 3        | 150 | 340 | 730   | 2616 | 2760 | 352 | 850 | 4042 | 1368        |

<sup>\*</sup> Autres TAILLES sur commande.

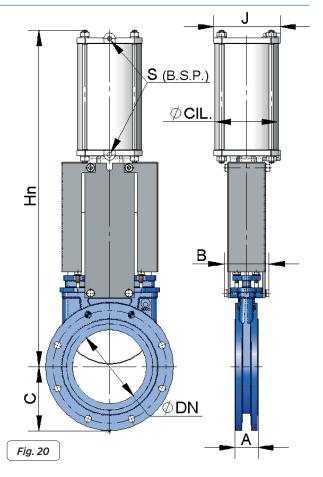
# **VERIN PNEUMATIQUE, DOUBLE EFFET**

Les variables de définition sont:

**B = hauteur max.** de la vanne (sans actionnement)

La pression d'alimentation d'air du vérin pneumatique est minimum de 6 bar et maximum de 10 bar; l'air doit être sec et lubrifié.

10 bar est la plus grande pression d'air permissible. Lorsque la pression de l'air est inférieure à 6 bar, consultez **CMO Valves.** 


Pour les vannes de DN80 jusqu'à DN200, la chemise et les couvercles du cylindre sont conçus en aluminium, la tige en AISI304, le piston en acier recouvert de caoutchouc et les joints toriques en nitrile.

Pour les vannes supérieures à DN200, les couvercles sont fabriqués en fonte nodulaire ou acier au carbone.

Il est également possible de fournir l'actionnement complètement fabriqué en acier inoxydable, notamment pour une installation dans des ambiances corrosives.

### **DISPONIBLE:**

DN80 à DN1200.



| DN   | ΔP (bar)  | Α   | В   | С     | Ø CIL. | Ø VAST | J   | <b>S</b> (B.S.P.) | Hn   | POIDS (kg.) |
|------|-----------|-----|-----|-------|--------|--------|-----|-------------------|------|-------------|
| 80   | 10        | 50  | 92  | 100   | 80     | 20     | 96  | 1/4"              | 498  | 12          |
| 100  | 10        | 50  | 92  | 114,5 | 100    | 20     | 115 | 1/4"              | 565  | 15          |
| 125  | 10        | 50  | 102 | 127   | 125    | 25     | 138 | 1/4"              | 636  | 22          |
| 150  | 10        | 60  | 102 | 142,5 | 125    | 25     | 138 | 1/4"              | 717  | 26          |
| 200  | 10        | 60  | 119 | 171,5 | 160    | 30     | 175 | 1/4"              | 874  | 41          |
| 250  | 10        | 70  | 119 | 203   | 200    | 30     | 218 | 3/8"              | 1036 | 68          |
| 300  | 6         | 70  | 119 | 242,5 | 200    | 30     | 218 | 3/8"              | 1182 | 86          |
| 350  | 6         | 96  | 290 | 267,5 | 250    | 40     | 270 | 3/8"              | 1380 | 148         |
| 400  | 6         | 100 | 290 | 297,5 | 250    | 40     | 270 | 3/8"              | 1530 | 177         |
| 450  | 5         | 106 | 290 | 320   | 300    | 45     | 382 | 1/2"              | 1677 | 251         |
| 500  | 4         | 110 | 290 | 357,5 | 300    | 45     | 382 | 1/2"              | 1839 | 285         |
| 600  | 4         | 110 | 290 | 420   | 300    | 45     | 382 | 1/2"              | 2146 | 376         |
| 700  | 3         | 110 | 320 | 455   | 350    | 45     | 426 | 1/2"              | 2481 | 598         |
| 800  | 3         | 110 | 320 | 505   | 350    | 45     | 426 | 1/2"              | 2798 | 727         |
| 900  | 3         | 110 | 320 | 585   | 400    | 50     | 508 | 1/2"              | 3167 | 894         |
| 1000 | Consulter | 110 | 320 | 615   | 400    | 50     | 508 | 1/2"              | 3451 | 1115        |
| 1100 | Consulter | 150 | 340 | 670   | 400    | 50     | 508 | 1/2"              | 3792 | 1275        |
| 1200 | Consulter | 150 | 340 | 730   | 400    | 50     | 508 | 1/2"              | 4135 | 1436        |

<sup>\*</sup> Autres TAILLES sur commande.

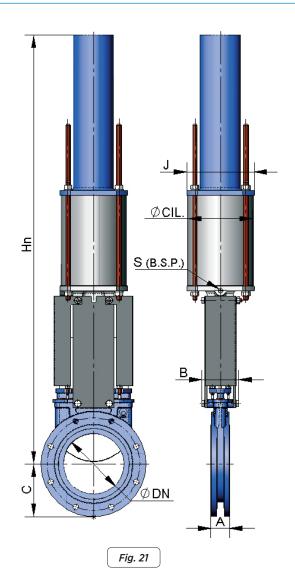
# **CYLINDRE PENUMATIQUE, SIMPLE EFFET**

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement).

La pression d'alimentation d'air du vérin pneumatique est minimum de 6 bar et maximum de 10 bar ; l'air doit être sec et lubrifié.

10 bar est la plus grande pression d'air permissible. Lorsque la pression de l'air est inférieure à 6 bar, consultez **CMO Valves.** 


Disponible pour fermeture et ouverture en cas de défaillance (ressort ferme ou ouvre).

La chemise est fabriquée en aluminium, les couvercles en fonte nodulaire ou acier au carbone, la tige en AlSI304, le piston en acier recouvert de caoutchouc, les joints toriques en nitrile et le ressort en acier.

La conception de l'actionnement est avec un ressort pour des vannes avec un diamètre de jusqu'à DN300. Pour des diamètres supérieurs, l'actionnement est composé d'un cylindre à double effet et d'un réservoir à air qui stocke le volume nécessaire pour effectuer le dernier mouvement en cas de défaillance.

### **DISPONIBLE:**

DN80 à DN300.



| DN  | ∆P (bar) | Α  | В   | С     | Ø CIL. | Ø VAST | J   | <b>S</b> (B.S.P.) | Hn   | POIDS (kg.) |
|-----|----------|----|-----|-------|--------|--------|-----|-------------------|------|-------------|
| 80  | 10       | 50 | 92  | 100   | 125    | 25     | 138 | 1/4"              | 833  | 26          |
| 100 | 10       | 50 | 92  | 114,5 | 125    | 25     | 138 | 1/4"              | 873  | 27          |
| 125 | 10       | 50 | 102 | 127   | 160    | 30     | 175 | 1/4"              | 909  | 39          |
| 150 | 10       | 60 | 102 | 142,5 | 160    | 30     | 175 | 1/4"              | 960  | 40          |
| 200 | 10       | 60 | 119 | 171,5 | 200    | 30     | 218 | 3/8"              | 1355 | 71          |
| 250 | 10       | 70 | 290 | 203   | 250    | 40     | 270 | 3/8"              | 1844 | 140         |
| 300 | 6        | 70 | 290 | 242,5 | 250    | 40     | 270 | 3/8"              | 2005 | 157         |

<sup>\*</sup> Autres TAILLES sur commande.

# **ACTIONNEUR ÉLECTRIQUE**

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement).

Cet actionnement est automatique et il est composé des parties suivantes:

- Moteur électrique
- Tige
- Pont

### LE MOTEUR ÉLECTRIQUE INCLUT:

- Volant manuel de secours
- Fins de course
- Limiteurs de couple

### **OPTIONS:**

- Différents types et marques
- Tige non montante
- Brides ISO 5210 / DIN 3338.

### **DISPONIBLE:**

- DN 80 à DN 1200
- À partir de DN500, le moteur est aidé par un réducteur.

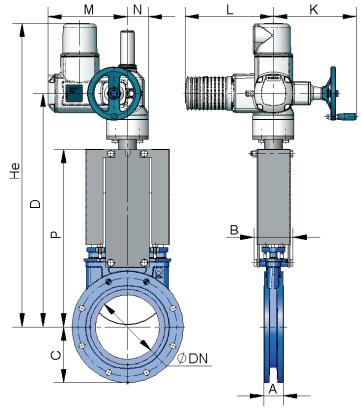



Fig. 22

| DN   | ∆P (bar) | A   | В   | С     | D    | K   | L   | М   | N   | Р    | He   | POIDS (kg.) |
|------|----------|-----|-----|-------|------|-----|-----|-----|-----|------|------|-------------|
| 80   | 10       | 50  | 92  | 100   | 452  | 249 | 265 | 238 | 62  | 294  | 647  | 29          |
| 100  | 10       | 50  | 92  | 114,5 | 492  | 249 | 265 | 238 | 62  | 334  | 687  | 30          |
| 125  | 10       | 50  | 102 | 127   | 525  | 249 | 265 | 238 | 62  | 367  | 720  | 34          |
| 150  | 10       | 60  | 102 | 142,5 | 577  | 249 | 265 | 238 | 62  | 419  | 772  | 36          |
| 200  | 10       | 60  | 119 | 171,5 | 685  | 249 | 265 | 238 | 62  | 525  | 990  | 47          |
| 250  | 10       | 70  | 119 | 203   | 785  | 249 | 265 | 238 | 62  | 626  | 1090 | 65          |
| 300  | 6        | 70  | 119 | 242,5 | 885  | 249 | 265 | 238 | 62  | 726  | 1190 | 86          |
| 350  | 6        | 96  | 290 | 267,5 | 940  | 254 | 283 | 248 | 65  | 797  | 1305 | 117         |
| 400  | 6        | 100 | 290 | 297,5 | 1045 | 254 | 283 | 248 | 65  | 903  | 1460 | 158         |
| 450  | 5        | 106 | 290 | 320   | 1175 | 336 | 389 | 286 | 91  | 989  | 1755 | 192         |
| 500  | 4        | 110 | 290 | 357,5 | 1290 | 336 | 389 | 286 | 91  | 1101 | 1870 | 273         |
| 600  | 4        | 110 | 290 | 420   | 1495 | 336 | 389 | 286 | 91  | 1307 | 2045 | 398         |
| 700  | 3        | 110 | 320 | 455   | 1661 | 336 | 389 | 286 | 91  | 1506 | 2401 | 474         |
| 800  | 3        | 110 | 320 | 505   | 1875 | 339 | 389 | 286 | 91  | 1720 | 2715 | 678         |
| 900  | 3        | 110 | 320 | 585   | 2108 | 339 | 389 | 286 | 91  | 1953 | 3043 | 818         |
| 1000 | 3        | 110 | 320 | 615   | 2292 | 339 | 389 | 286 | 91  | 2137 | 3351 | 1060        |
| 1100 | 3        | 150 | 340 | 670   | 2530 | 339 | 389 | 286 | 91  | 2375 | 3675 | 1259        |
| 1200 | 3        | 150 | 340 | 730   | 2760 | 336 | 389 | 528 | 125 | 2616 | 4042 | 1420        |

<sup>\*</sup> Autres TAILLES sur commande.

# **ACTIONNEMENT HYDRAULIQUE**

Les variables de définition sont:

**B = largeur max.** de la vanne (sans actionnement).

### **ACTIONNEMENT HYDRAULIQUE:**

- Cylindre
- Pont

### PRESIÓN DE ALIMENTACIÓN STANDARD:

• 150 bar.

### **DISPONIBLE:**

DN80 à DN1200.




Fig. 23

| DN   | ∆P (bar) | A   | В   | С     | Hh   | ø CIL | S (B.S.P.) | CAP. D'HUILE (dm³) | Ø VAST | POIDS (kg.) |
|------|----------|-----|-----|-------|------|-------|------------|--------------------|--------|-------------|
| 80   | 10       | 50  | 92  | 100   | 560  | 25    | 3/8"       | 0.04               | 18     | 12          |
| 100  | 10       | 50  | 92  | 114,5 | 620  | 32    | 3/8"       | 0.09               | 22     | 15          |
| 125  | 10       | 50  | 102 | 127   | 683  | 32    | 3/8"       | 0.11               | 22     | 19          |
| 150  | 10       | 60  | 102 | 142,5 | 755  | 40    | 3/8"       | 0.20               | 28     | 24          |
| 200  | 10       | 60  | 119 | 171,5 | 926  | 50    | 3/8"       | 0.42               | 28     | 36          |
| 250  | 10       | 70  | 119 | 203   | 1077 | 50    | 3/8"       | 0.52               | 28     | 54          |
| 300  | 6        | 70  | 119 | 242,5 | 1245 | 50    | 3/8"       | 0.62               | 28     | 76          |
| 350  | 6        | 96  | 290 | 267,5 | 1376 | 50    | 3/8"       | 0.73               | 28     | 118         |
| 400  | 6        | 100 | 290 | 297,5 | 1535 | 63    | 3/8"       | 1.31               | 36     | 160         |
| 450  | 5        | 106 | 290 | 320   | 1710 | 63    | 3/8"       | 1.47               | 36     | 187         |
| 500  | 4        | 110 | 290 | 357,5 | 1870 | 63    | 3/8"       | 1.62               | 36     | 251         |
| 600  | 4        | 110 | 290 | 420   | 2175 | 80    | 3/8"       | 3.12               | 45     | 361         |
| 700  | 3        | 110 | 320 | 455   | 2525 | 80    | 3/8"       | 3.62               | 45     | 523         |
| 800  | 3        | 110 | 320 | 505   | 2839 | 100   | 1/2"       | 6.44               | 56     | 726         |
| 900  | 3        | 110 | 320 | 585   | 3172 | 100   | 1/2"       | 7.25               | 56     | 915         |
| 1000 | 3        | 110 | 320 | 615   | 3496 | 125   | 1/2"       | 10.25              | 70     | 1165        |
| 1100 | 3        | 150 | 340 | 670   | 3760 | 125   | 1/2"       | 13.56              | 70     | 1331        |
| 1200 | 3        | 150 | 340 | 730   | 4174 | 125   | 1/2"       | 15.05              | 70     | 1500        |

<sup>\*</sup> Autres TAILLES sur commande.

# **DIMENSIONES DE BRIDAS**

### EN 1092-2 PN10

| DN   | •  | M          | Р  | ØК   |
|------|----|------------|----|------|
|      |    | (Métrique) |    |      |
| 80   | 8  | M 16       | 9  | 160  |
| 100  | 8  | M 16       | 9  | 180  |
| 125  | 8  | M 16       | 9  | 210  |
| 150  | 8  | M 20       | 10 | 240  |
| 200  | 8  | M 20       | 10 | 295  |
| 250  | 12 | M 20       | 12 | 350  |
| 300  | 12 | M 20       | 12 | 400  |
| 350  | 16 | M 20       | 21 | 460  |
| 400  | 16 | M 24       | 21 | 515  |
| 450  | 20 | M 24       | 22 | 565  |
| 500  | 20 | M 24       | 22 | 620  |
| 600  | 20 | M 27       | 22 | 725  |
| 700  | 24 | M 27       | 22 | 840  |
| 800  | 24 | M 30       | 22 | 950  |
| 900  | 28 | M 30       | 20 | 1050 |
| 1000 | 28 | M 33       | 20 | 1160 |
| 1100 | 32 | M 33       | 20 | 1270 |
| 1200 | 32 | M 36       | 22 | 1380 |

Tableau 13

Fig. 24



### ANSI B16, Clase 150

| DN  | •  | M<br>(UNC) | Р  | ØК     |
|-----|----|------------|----|--------|
| 3"  | 4  | 5/8"       | 9  | 152,4  |
| 4"  | 8  | 5/8"       | 9  | 190,5  |
| 5"  | 8  | 3/4"       | 9  | 215,9  |
| 6"  | 8  | 3/4"       | 10 | 241,3  |
| 8"  | 8  | 3/4"       | 10 | 298,4  |
| 10" | 12 | 7/8"       | 12 | 361,9  |
| 12" | 12 | 7/8"       | 12 | 431,8  |
| 14" | 12 | 1"         | 21 | 476,2  |
| 16" | 16 | 1"         | 21 | 539,7  |
| 18" | 16 | 1 1/8"     | 22 | 577,8  |
| 20" | 20 | 1 1/8"     | 22 | 635    |
| 24" | 20 | 1 1/4"     | 22 | 749,3  |
| 28" | 28 | 1 1/4"     | 22 | 863,6  |
| 30" | 28 | 1 1/4"     | 22 | 914,4  |
| 32" | 28 | 1 ½"       | 22 | 977,9  |
| 36" | 32 | 1 ½"       | 20 | 1085,8 |
| 40" | 36 | 1 ½"       | 20 | 1200,2 |
|     |    | Tableau 14 |    |        |

**CMO Valves** se réserve le droit de modifier les données et le contenu de ce document à tout moment, à sa discrétion et sans préavis, dans le cadre de son processus d'amélioration continue des produits et des services. Les documents antérieurs deviennent invalides avec la publication de la dernière révision.

Le manuel d'Installation et de Maintenance est disponible sur www.cmovalves.com.

Fig. 25

• TROUS FILETES



### www.cmovalves.com





QMS CERTIFIED BY LRQA Approval number ISO9001 0035593

# CMO VALVES HEADQUARTERS MAIN OFFICES & FACTORY

Amategi Aldea, 142 20400 Tolosa Gipuzkoa (Spain)

Tel.: (+34) 943 67 33 99

cmo@cmovalves.com www.cmovalves.com

# CMO VALVES MADRID

C/ Rumania, 5 - D5 (P.E. Inbisa) 28802 Alcalá de Henares Madrid (Spain)

Tel.: (+34) 91 877 11 80

cmomadrid@cmovalves.com www.cmovalves.com

# CMO VALVES FRANCE

5 chemin de la Brocardière F-69570 DARDILLY France

Tel.: (+33) 4 72 18 94 44

cmofrance@cmovalves.com www.cmovalves.com