

VÁLVULA DE GUILLOTINA BIDIRECCIONAL, TIPO "LUG"

DESCRIPCIÓN

- Válvula de guillotina, bidireccional.
- Cuerpo de fundición de una sola pieza "monoblock".
- Tajadera inoxidable. Recubrimiento interior del cuerpo en poliuretano.
- Proporciona grandes caudales con pequeñas pérdidas de carga.
- Distancia entre caras de acuerdo al estándar de CMO Valves no necesita juntas entre las bridas por tenerla incorporada en el cuerpo.

APLICACIONES GENERALES

Esta válvula de guillotina es apropiada para trabajar en industria minera, en líneas de transporte de fluidos cargados, por ejemplo: agua con piedras, lodos, etc. y en general se utiliza para fluidos abrasivos con sólidos en distintas concentraciones sin fuga al medio ambiente, tales como industria química y aguas residuales.

Diseñada para aplicaciones tales como:

- Industria de la minería
- Tratamiento de aguas
- Centrales eléctricas
- Plantas químicas
- Sector energético
- Centrales térmicas

TAMAÑOS

DN50 a DN600

Las presiones indicadas en la tabla, pueden ser utilizadas en cualquiera de los dos sentidos de la válvula.

PRESIÓN DE TRABAJO (△P)

DN50 - DN600 10 bar

TALADRADO BRIDAS

DIN PN10 & ANSI B16.5 (150 LB)

OTRAS USUALES

PN 6 Australian standard. PN 16 JIS standard. PN 25 British standard.

Fig. 1

APLICACIÓN DE DIRECTIVAS EUROPEAS

Ver documento de Directivas aplicables a CMO Valves.

DOSSIER DE CALIDAD

Todas las válvulas se prueban hidrostáticamente según normativa vigente y es posible suministrar certificados de materiales y pruebas.

- Prueba del cuerpo = presión de trabajo x 1,5.
- Prueba de cierre = presión de trabajo x 1,1.

^{*} Otras dimensiones bajo consulta.

^{*} Otras presiones bajo consulta.

^{*} Para información de categorías y zonas, contactar con el departamento técnico-comercial de **CMO Valves.**

VENTAJAS

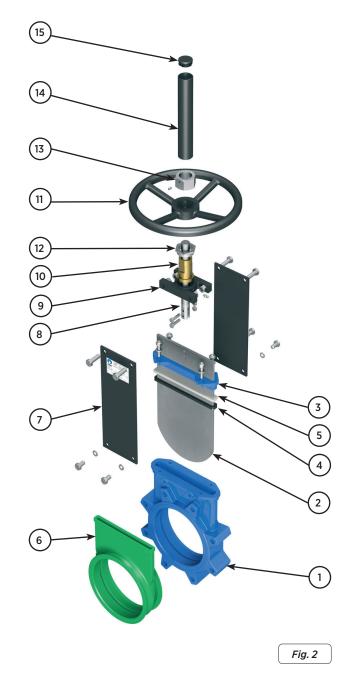
La característica principal de esta válvula de guillotina es que proporciona un paso total y continuo. Ello implica que en posición abierta no produce cavitaciones y no hay turbulencias en el fluido.

El cuerpo de la válvula XB se compone de una sola pieza "monoblock".

La caperuza de protección del husillo es independiente a la tuerca de fijación del volante de forma que se puede desmontar la caperuza sin tener que soltar el volante completo. Esta ventaja permite realizar operaciones habituales de mantenimiento tales como engrase del husillo, etc.

El husillo de la válvula **CMO Valves** está fabricado en acero inoxidable AISI 304. Esta es otra ventaja añadida, ya que algunos fabricantes lo suministran con un 13% de cromo y se oxida rápidamente.

El volante de maniobra está fabricado en fundición nodular. Algunos fabricantes lo suministran en hierro fundido corriente, esto puede derivar en una rotura en caso de un par de maniobra muy alto o un golpe.


El puente de maniobra se fabrica con un diseño compacto con la tuerca de accionamiento de bronce protegida en una caja cerrada y engrasada. Esto da la posibilidad de mover la válvula con una llave, incluso sin volante (en otros fabricantes esto no es posible).

Las tapas superior e inferior del accionamiento neumático se fabrican en fundición nodular, por lo tanto la resistencia a golpes es alta. Esta característica es esencial en accionamientos neumáticos.

Las juntas del cilindro neumático son comerciales y se pueden conseguir en todo el mundo. Por lo tanto no es necesario contactar con **CMO Valves** cada vez que las juntas sean necesarias.

LISTA DE COMPONENTES ESTÁNDAR

co	MPONENTES	VERSIÓN HºFº	VERSIÓN INOX
1	CUERPO	GJS500-7	CF8M
2	TAJADERA	AISI304	AISI316
3	PRENSAESTOPAS	GJS500-7	CF8M
4	JUNTA	EP	DM
5	EMPAQUETADURA	SINT.	+PTFE
6	RECUBRIMIENTO	POLIUF	RETANO
7	PLACAS SOPORTE	S27	75JR
8	HUSILLO	AIS	1316
9	PUENTE	GJS!	500-7
10	TUERCA HUSILLO	BRC	NCE
11	VOLANTE	GJS!	500-7
12	TUERCA TOPE	ST44.2	+ ZINC
13	TUERCA CAPERUZA	AC	ERO
14	CAPERUZA	AC	ERO
15	TAPÓN CAPERUZA	PLÁS	STICO

CARACTERISTICAS DE DISEÑO

1. CUERPO

Cuerpo de fundición con refuerzos de una sola pieza. El cuerpo proporciona un paso total y continuo. Ello implica que en posición abierta no produce cavitaciones y por lo tanto, no hay turbulencias en el fluido y la pérdida de carga es mínima. Para diámetros mayores a DN600 la construcción del cuerpo se realiza mecano soldada con los refuerzos necesarios para resistir la máxima presión de trabajo. Diseñado con paso total para proporcionar grandes caudales con pequeñas pérdidas de carga.

El diseño interno del cuerpo evita el almacenaje de sólidos en la zona del cierre.

Los materiales de fabricación estándar son GJS500-7 y acero inoxidable CF8M. Otros materiales tales como: acero al carbono A216WCB y aleaciones de acero inoxidable (AISI316Ti, Duplex, 254SMO, Uranus B6, Ni-Resist, Ductile Ni-Resist...) están disponibles bajo consulta. Como norma habitual las válvulas de hierro o acero al carbono son pintadas con una protección anti corrosiva de 150 micras de EPOXY (color RAL 5015). Existen a su disposición otros tipos de protecciones anti corrosivas.

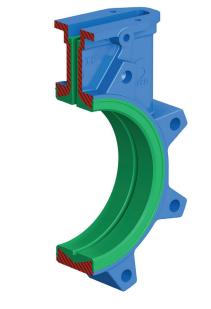
2. TAJADERA

Los materiales de fabricación estándar son acero inoxidable AISI304 en válvulas con cuerpo de GJS500-7 y acero inoxidable AISI316 en válvulas con cuerpo de CF8M. Otros materiales o combinaciones pueden ser suministrados bajo consulta. La tajadera se suministra pulida en ambas caras para proporcionar una superficie de contacto suave con la junta de estanqueidad. Al mismo tiempo las aristas de la tajadera son redondeadas para evitar el corte de la junta. Existen diferentes grados de pulidos, tratamientos anti abrasión y varias opciones para adaptar las válvulas a los requerimientos del cliente.

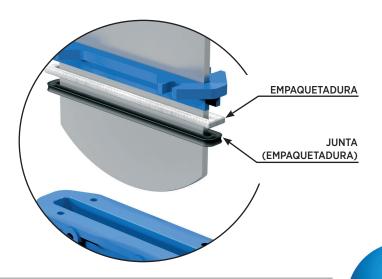
3. ASIENTO

El asiento de la **válvula XB** se compone de un recubrimineto interior, que se extendiende por todo el interior del cuerpo. El recubrimiento está fabricado en distintos materiales. La **válvula XB** está diseñada para fluidos abrasivos, por ello el recubrimiento protege a toda la superficie del cuerpo que estaría expuesta al caudal abrasivo.

En lo referente al mantenimiento, se debe mencionar que en este tipo de válvulas de diseño compacto la junta de cierre está unida de forma permanente al cuerpo. Por lo que la sustitución de esta junta de cierre se debe realizar mediante la renovación del cuerpo (fig. 3).


MATERIALES DE JUNTA ESTANQUEIDAD

POLIRUETANO


Es la junta de estanqueidad estándar en las **válvula XB**. Puede ser utilizada en múltiples aplicaciones a temperaturas no mayores de 90°C, con productos abrasivos y proporcionas a la válvula una estanqueidad del 100%. Aplicación: fluidos en general.

4. EMPAQUETADURA

La empaquetadura estándar de **CMO Valves** se compone de una junta de diseño especial de EPDM que proporciona la estanqueidad entre el cuerpo y la tajadera, evitando cualquier tipo de fuga a la atmósfera. También dispone de una tira de empaquetadura engrasada para facilitar el funcionamiento de la válvula a la hora de realizar maniobras de apertura y cierre. Se sitúan en una zona fácilmente accesible y pueden ser reemplazadas sin desmontar la válvula de la línea.

5. HUSILLO

El husillo de las válvulas **CMO Valves** está fabricado en acero inoxidable AISI 304. Esta característica le proporciona una alta resistencia y unas propiedades excelentes frente a la corrosión. El diseño de la válvula puede ser con husillo ascendente o husillo no ascendente. Cuando la válvula es requerida con husillo ascendente, se suministra una caperuza que protege al husillo del contacto con el polvo y suciedad, además de mantenerlo lubricado.

6. PRENSAESTOPAS

El prensa estopas permite aplicar una fuerza y presión uniforme en la empaquetadura para asegurar la estanqueidad. Como norma habitual, las válvulas con cuerpo en acero incluyen prensa estopas fabricado en acero, mientras que las válvulas con cuerpo en acero inoxidable lo llevan en inoxidable.

7. ACCIONAMIENTOS

Es posible suministrar todo tipo de accionamientos, con la ventaja de que el diseño de **CMO Valves** es completamente intercambiable. Este diseño permite al cliente cambiar el accionamiento por sí mismo y no se necesita ningún tipo de accesorio de montaje extra. Una característica del diseño de las válvulas de **CMO Valves** es que todos los accionamientos son intercambiables entre sí.

Accionamientos Manuales

Volante (*)

Volante con cadena (*)

Reductor (*)

Otros, (Cuadradillo de maniobra)

Disponibilidad de Accesorios

Topes mecánicos

Dispositivos de bloqueo

Accionamientos manuales de emergencia

Electroválvulas

Posicionadores

Finales de carrera

Detectores de proximidad

Columna de maniobra recta (fig. 4)

Columna de maniobra inclinada (fig. 5)

Accionamientos Automáticos

Actuador eléctrico (*)

Cilindro neumático D/E

Cilindro hidraúlico

(*) Disponibles en versión de husillo ascendente y no ascendente.

También se han desarrollado los alargamientos de husillo, permitiendo la actuación desde posiciones alejadas de la ubicación de la válvula para ajustarse a todas las necesidades. Se recomienda consulten previamente a nuestros técnicos.

ACCESORIOS Y OPCIONES

Existen disponibles diferentes tipos de accesorios para adaptar la válvula a condiciones de trabajo específicas, tales como:

TAJADERA PULIDO ESPEJO:

La tajadera pulido espejo esta especialmente recomendada en la industria alimentaria, como norma general, en aplicaciones en las que el fluido se puede adherir a la tajadera.

TAJADERA RECUBIERTA DE PTFE:

Al igual que la tajadera pulido espejo, mejora las prestaciones de la válvula con productos que puedan adherirse a la tajadera.

TAJADERA ESTELLITADA:

Aporte de estellite en el perímetro inferior de la tajadera para protegerla de la abrasión.

RASCADOR EN LA EMPAQUETADURA:

Su función es limpiar la tajadera durante el movimiento de apertura y evitar posibles daños en la empaquetadura.

INYECCIONES DE AIRE EN LA EMPAQUETADURA:

Mediante la inyección de aire en la empaquetadura se crea una cámara de aire que mejora la estanqueidad.

SOPORTE DE ACCIONAMIENTO O PUENTE:

De acero (o de inoxidable bajo consulta), recubierto de EPOXI, su robusto diseño le confiere una gran rigidez, soportando las condiciones de operación más adversas.

FINAL DE CARRERA MECÁNICOS, DETECTORES INDUCTIVOS Y POSICIONADORES:

Finales de carrera o detectores para indicación de posición puntual de la válvula y posicionadores para indicación de posición continua.

ELECTROVÁLVULAS:

Para distribución del aire a los accionamientos neumáticos.

CAJAS DE CONEXIÓN, CABLEADO Y ENTUBADO NEUMÁTICO:

Es posible suministrar unidades completamente montadas con todos los accesorios necesarios.

LIMITADORES DE CARRERA MECÁNICOS (TOPES MECÁNICOS):

Permiten ajustar mecánicamente la carrera, limitando el recorrido de la válvula.

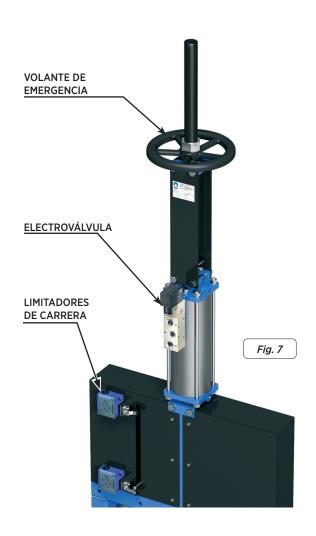
SISTEMA DE BLOQUEO MECÁNICO:

Permite bloquear mecánicamente la válvula en una posición fija.

ACCIONAMIENTO MANUAL DE EMERGENCIA (VOLANTE / REDUCTOR):

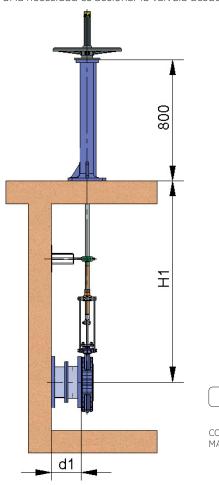
Permite actuar la válvula manualmente en caso de fallo de energía o de aire.

INTERCAMBIABILIDAD DE LOS ACCIONAMIENTOS:


Los accionamientos son fácilmente intercambiables entre sí.

RECUBRIMIENTO DE EPOXI:

Todos los cuerpos y componentes de H° F° y de acero al carbono de las válvulas van recubiertos de una capa de EPOXI, que da a las válvulas una gran resistencia a la corrosión, y un excelente acabado superficial. El color estándar de **CMO Valves** es el azul, RAL 5015.


PROTECCIONES DE SEGURIDAD PARA LA TAJADERA:

Siguiendo la normativa europea de seguridad (marcado "CE"), a las válvulas automáticas se les incorporan unas protecciones metálicas en el recorrido de la tajadera, evitando así que ningún cuerpo u objeto pueda ser accidentalmente atrapado o arrastrado.

TIPOS DE EXTENSIONES

Si la necesidad es accionar la válvula desde una posición alejada, podemos colocar accionamientos de distinto tipo:

1.- COLUMNA DE MANIOBRA

Este alargamiento se realiza acoplando un vástago al husillo. Definiendo la longitud del vástago, conseguimos la medida de extensión deseada. Normalmente se incorpora una columna de maniobra para soportar el accionamiento.

Las variables de definición son:

H1 = Distancia del centro de la válvula a la base de la columna

d1 = Separación desde la pared hasta el final de la brida de conexión

CARACTERÍSTICAS

- Puede ser acoplado sobre cualquier tipo de accionamiento.
- Se recomienda un soporte-guía de husillo cada 1,5 m. (Fig. 8)
- La columna de maniobra standard es de 800 mm. de altura. (Fig.9)
- Posibilidad de colocación de una regleta de indicación para conocer el grado de apertura de la válvula.
- Columna inclinada bajo consulta. (Fig.10)
- Otras medidas de columna bajo consulta.

COLUMNA DE MANIOBRA ESTADAR.

Fig. 8

SOPORTE-GUÍA DE HUSILLO.

LISTA DE COMPONENTES

COMPONENTE	VERSIÓN ESTANDAR
Husillo	AISI 304
Vástago	AISI 304
Soporte-Guía	Acero al carbono con recubrimiento de EPOXI
Deslizadera	AP6
Columna	GJS500-7 con recubrimiento EPOXI

Tabla. 3

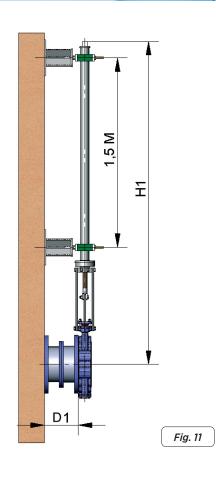
COLUMNA INCLINADA.

Fig. 10

Nota: Existe la posibilidad de poner un indicador de posición en la columna de maniobra.

2.- TUBO

Consiste en elevar el accionamiento. El tubo girará solidario al volante cuando la válvula se acciona, ésta siempre permanece a la misma altura.


Las variables de definición son:

H1 = Distancia del centro de la válvula a la base de la columna

D1 = Separación desde la pared hasta el final de la brida de conexión

CARACTERÍSTICAS:

- Accionamientos estándar: Volante y "Cuadradillo".
- Se recomienda un soporte-guía del tubo cada 1,5 m.
- Los materiales estándar, son: Acero al carbono con recubrimiento EPOXI y acero inoxidable.

3.- PLACAS SOPORTE ALARGADAS

Cuando se trata de una pequeña extensión, se puede conseguir prolongando las placas de soporte. Para reforzar la estructura de las placas soporte, se puede colocar un puente intermedio.

4.- CARDAN

Si nos encontramos con una desalineación entre la válvula y el accionamiento, podemos solucionar nuestro problema colocando una articulación tipo cardan.

Esta opción solo es válida para accionamientos de husillo no ascendente.

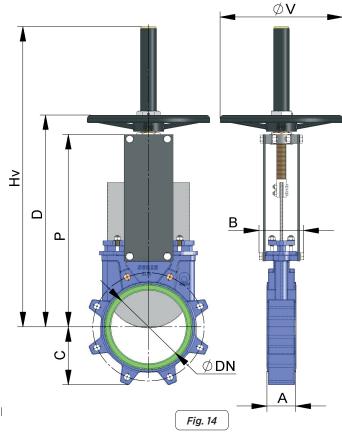
VOLANTE CON HUSILLO ASCENDENTE

Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

P = altura máx. de la válvula (sin accionamiento).

OPCIONES:


- Bloqueadores.
- Extensiones: columna, tubo, placas.
- DN superiores a los señalados en la tabla.

ACCIONAMIENTO COMPUESTO:

- Volante
- Husillo
- Tuerca
- Caperuza de protección para el husillo

DISPONIBLE:

- Estándar DN50 a DN350.
- Otros DN bajo consulta.
- Los pesos son aproximados, varían dependiendo del material y los accesorios de la válvula.
- A partir de DN350 el accionamiento es con reductor.
- Otras presiones bajo consulta

DN	∆P (bar)	Α	В	С	Р	D	Hv	øV	Peso (kg.)
50	10	54	91	61	241	280	410	225	7
65	10	54	91	68	268	308	437	225	8
80	10	57	91	91	294	333	463	225	9
100	10	57	91	104	334	373	503	225	11
125	10	64	101	118	367	407	586	225	13
150	10	64	101	130	419	458	638	225	17
200	10	76	118	159	525	578	816	325	28
250	10	76	118	196	626	679	1017	325	40
300	10	83	118	231	726	779	1117	380	56
350	10	83	290	257	797	906	1337	450	96

VOLANTE CON HUSILLO NO ASCENDENTE

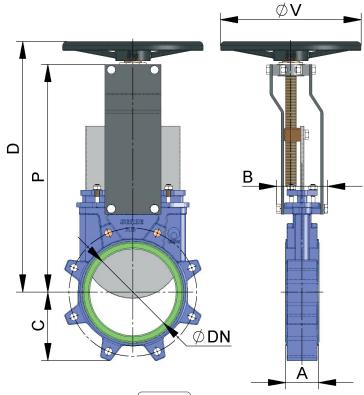
Apropiado cuando existen limitaciones dimensionales

Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

P = altura máx. de la válvula (sin accionamiento).

OPCIONES:


- Cuadradillo de maniobra.
- Bloqueadores
- Extensiones: placas alargadas...
- DN superiores a los señalados en la tabla.

ACCIONAMIENTO COMPUESTO:

- Volante
- Husillo
- Tuerca
- Casquillos guía puente

DISPONIBLE:

- Estándar DN50 a DN350.
- · Otros DN bajo consulta.
- Los pesos son aproximados, varían dependiendo del material y los accesorios de la válvula.
- A partir de DN350 el accionamiento es con reductor.
- Otras presiones bajo consulta

Fig.	15
------	----

DN	∆P (bar)	A	В	С	P	D	øV	Peso (kg.)
50	10	54	91	61	241	280	225	7
65	10	54	91	68	268	308	225	8
80	10	57	91	91	294	333	225	9
100	10	57	91	104	334	373	225	11
125	10	64	101	118	367	407	225	13
150	10	64	101	130	419	458	225	17
200	10	76	118	159	525	578	325	29
250	10	76	118	196	626	679	325	40
300	10	83	118	231	726	779	380	53
350	10	83	290	257	797	906	450	93

VOLANTE CON CADENA

Muy utilizado en instalaciones elevadas de accesos difíciles, el volante se coloca en posición vertical.

Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

P = altura máx. de la válvula (sin accionamiento).

OPCIONES:

- Bloqueadores.
- Extensiones: placas alargadas.
- Husillo no ascendente.
- DN superiores a los señalados en la tabla.

ACCIONAMIENTO COMPUESTO:

- Volante
- Husillo
- Tuerca
- Cadena
- Caperuza

DISPONIBLE:

- Estándar DN50 a DN350.
- Otros DN bajo consulta.
- A partir de DN350 el accionamiento es con reductor.
- Los pesos son aproximados, varían dependiendo del material y los accesorios de la válvula.
- Otros presiones bajo consulta.

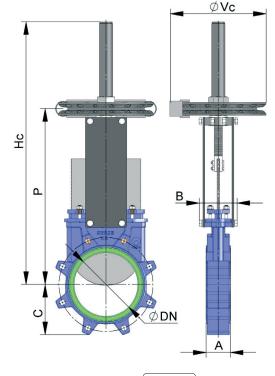


Fig. 16

DN	∆P (bar)	Α	В	С	Р	Нс	øVc	Peso (kg.)
50	10	54	91	61	280	410	225	7
65	10	54	91	68	308	437	225	8
80	10	57	91	91	333	463	225	9
100	10	57	91	104	373	503	225	11
125	10	64	101	118	407	586	225	13
150	10	64	101	130	458	638	225	17
200	10	76	118	159	578	816	300	29
250	10	76	118	196	679	1017	300	40
300	10	83	118	231	779	1117	300	53
350	10	83	290	257	906	1337	402	93

REDUCTOR

Es recomendable para DN mayores de 600.

Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

P = altura máx. de la válvula (sin accionamiento).

OPCIONES:

- · Volante con cadena.
- Bloqueadores.
- Extensiones: columna, tubo, placas...
- Husillo no ascendente.

ACCIONAMIENTO COMPUESTO:

- Puente
- Reductor cónico
- Volante
- Husillo
- Ratio de reducción estándar: 4 a 1

DISPONIBLE:

- DN50 a DN600.
- Otros DN bajo consulta.
- Pesos aproximados, dependiendo del material y los accesorios de la válvula.
- Otros presiones bajo consulta.

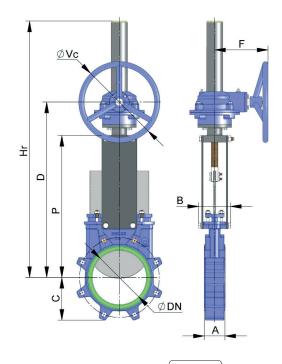
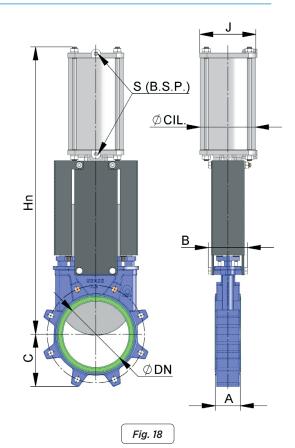


Fig. 17

DN	∆P (bar)	Α	В	С	P	D	Hr	F	øVc	Peso (kg.)
50	10	54	91	61	241	366	540	198	300	17
65	10	54	91	68	268	392	566	198	300	18
80	10	57	91	91	294	418	592	198	300	19
100	10	57	91	104	334	458	632	198	300	20
125	10	64	101	118	367	491	665	198	300	24
150	10	64	101	130	419	543	717	198	300	26
200	10	76	118	159	525	648	942	198	300	50
250	10	76	118	196	626	749	1043	198	300	63
300	10	83	118	231	726	849	1193	198	300	77
350	10	83	290	257	797	891	1335	218	450	106
400	10	96	290	290	903	997	1441	218	450	134
450	10	96	290	312	989	1083	1677	218	450	173
500	10	121	290	340	1101	1195	1789	288	650	216
600	10	121	290	398	1307	1420	2108	332	1000	284

CILINDRO NEUMÁTICO, DOBLE EFECTO


Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

- La presión de alimentación de aire al cilindro neumático es mínimo de 6 bar y máximo de 10 bar. El aire debe de estar seco y lubricado.
- Para válvulas de DN50 hasta DN200 la camisa y tapas del cilindro son fabricadas en aluminio, el vástago en AISI304, el émbolo en acero recubierto de goma y las juntas tóricas de nitrilo.
- Para válvulas mayores que DN200 las tapas son fabricadas en fundición nodular o en acero al carbono.
- Bajo consulta también es posible suministrar el accionamiento completamente en acero inox., especialmente para ser instalado en ambientes corrosivos.

DISPONIBLE:

- DN50 a DN600.
- Otros DN bajo consulta.
- Pesos aproximados, dependiendo del material y los accesorios de la válvula.
- Otros presiones bajo consulta.

DN	∆P (bar)	Α	В	С	øCIL	øVast.	J	S (B.S.P)	Hn	Peso (kg.)
50	10	54	91	61	80	20	90	1/4"	416	7
65	10	54	91	68	80	20	90	1/4"	456	8
80	10	57	91	91	80	20	90	1/4"	498	9
100	10	57	91	104	100	20	110	1/4"	562	12
125	10	64	101	118	125	25	135	1/4"	636	18
150	10	64	101	130	160	30	170	1/4"	723	22
200	10	76	118	159	200	30	215	1/4"	886	37
250	10	76	118	196	250	40	270	3/8"	1133	58
300	10	83	118	231	300	45	382	1/2"	1278	72
350	10	83	290	257	350	45	444	1/2"	1383	130
400	10	96	290	290	400	50	508	1/2"	1532	155
450	10	96	290	312	*	*	*	*	*	225
500	10	121	290	340	*	*	*	*	*	257
600	10	121	290	398	*	*	*	*	*	340
* Con	sultar	-		-					-	

ACTUADOR ELÉCTRICO

Las variables de definición son:

B = anchura máx. de la válvula (sin accionamiento).

P = altura máx. de la válvula (sin accionamiento).

Este accionamiento es automático y se compone de las siguientes partes:

- Motor eléctrico
- Husillo
- Puente

El motor eléctrico se compone de:

- Volante manual de emergencia,
- Finales de carrera
- Limitadores de par

OPCIONES:

- Husillo no ascendente.
- Bridas ISO 5210 / DIN 3338

DISPONIBLE:

- DN50 a DN1500.
- Otros DN bajo consulta.
- A partir de DN350 el motor se ayuda un reductor.
- Pesos aproximados, dependiendo del material y los accesorios de la válvula.
- Otros presiones bajo consulta.

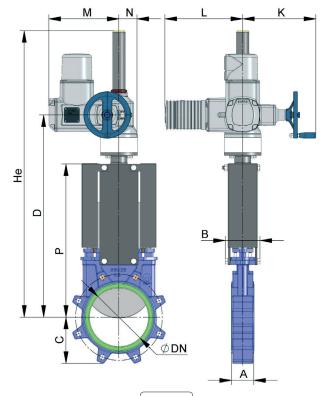
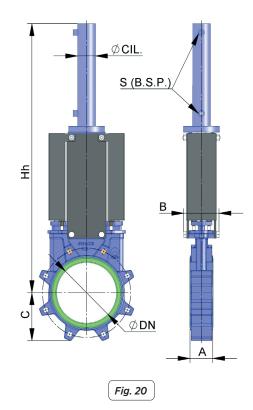


Fig. 19

DN	∆P (bar)	Α	В	С	P	D	He	K	L	М	N	Peso (kg)
50	10	54	91	61	241	400	581	250	265	238	62	24
65	10	54	91	68	268	426	607	250	265	238	62	25
80	10	57	91	91	294	452	632	250	265	238	62	26
100	10	57	91	104	334	492	672	250	265	238	62	27
125	10	64	101	118	367	525	705	250	265	238	62	30
150	10	64	101	130	419	577	757	250	265	238	62	32
200	10	76	118	159	525	683	988	250	265	238	62	42
250	10	76	118	196	626	774	1089	250	265	238	62	55
300	10	83	118	231	726	874	1189	255	282	248	65	72
350	10	83	290	257	797	931	1335	250	265	382	88	99
400	10	96	290	290	903	1037	1441	255	282	390	88	136
450	10	96	290	312	989	1123	1677	255	282	390	88	166
500	10	121	290	340	1101	1245	1789	255	282	390	88	245
600	10	121	290	398	1307	1470	2108	325	385	453	100	362

ACCIONAMIENTO HIDRÁULICO

Las variables de definición son:


B = anchura máx. de la válvula (sin accionamiento).

Este accionamiento es hidráulico y se compone de las siguientes partes:

- Cilindro Hidráulico
- Puente

DISPONIBLE:

- DN50 hasta DN600.
- Otras bajo consulta.
- Pesos aproximados, dependiendo del material y los accesorios de la válvula.
- Posibilidad de diferentes tipos y marcas según las necesidades del cliente.
- Otros presiones bajo consulta.

DN	∆P (bar)	A	В	С	Hh	ø CIL	S (B.S.P)	CAP. ACEITE (dm³)	ø VAST	Peso (kg.)
50	10	54	91	61	457	25	3/8"	0.03	18	7
65	10	54	91	68	500	25	3/8"	0.04	18	8
80	10	57	91	91	560	25	3/8"	0.04	18	9
100	10	57	91	104	620	32	3/8"	0.09	22	12
125	10	64	101	118	683	32	3/8"	0.11	22	15
150	10	64	101	130	755	40	3/8"	0.20	28	20
200	10	76	118	159	926	50	3/8"	0.42	28	31
250	10	76	118	196	1077	63	3/8"	0.81	36	44
300	10	83	118	231	1246	80	3/8"	1.56	36	62
350	10	83	290	257	1376	100	1/2"	2.87	56	100
400	10	96	290	290	1532	100	1/2"	3.26	56	138
450	10	96	290	312	1707	125	1/2"	5.71	70	161
500	10	121	290	340	1869	125	1/2"	6.32	70	223
600	10	121	290	398	2202	160	1/2"	12.37	70	325

INFORMACIÓN SOBRE DIMENSIONES DE BRIDAS

EN 1092-2 PN10

DN	∆P (bar)	•	M (Métrica)	P	øK
50	10	4	M 16	8	125
65	10	4	M 16	8	145
80	10	8	M 16	9	160
100	10	8	M 16	9	180
125	10	8	M 16	9	210
150	10	8	M 20	10	240
200	10	8	M 20	10	295
250	10	12	M 20	12	350
300	10	12	M 20	12	400
350	10	16	M 20	21	460
400	10	16	M 24	21	515
450	10	20	M 24	22	565
500	10	20	M 24	22	620
600	10	20	M 27	22	725

Tabla. 11

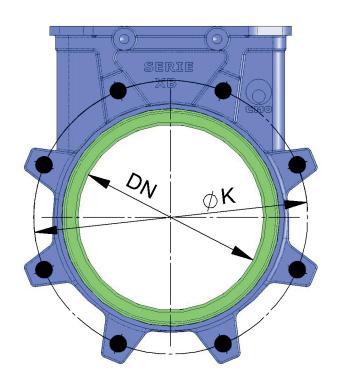
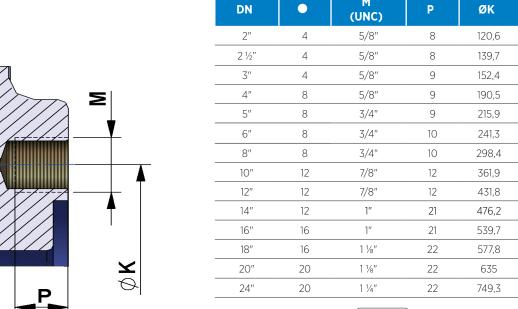
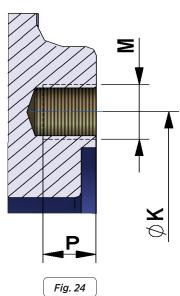



Fig. 23


М

TALADRO ROSCADO

ANSI B16, Clase 150

www.cmovalves.com

QMS CERTIFIED BY LRQA
Approval number ISO9001 0035593

CMO VALVES HEADQUARTERS MAIN OFFICES & FACTORY

Amategi Aldea, 142 20400 Tolosa Gipuzkoa (Spain)

Tel.: (+34) 943 67 33 99

cmo@cmovalves.com www.cmovalves.com

CMO VALVES MADRID

C/ Rumania, 5 - D5 (P.E. Inbisa) 28802 Alcalá de Henares Madrid (Spain)

Tel.: (+34) 91 877 11 80

cmomadrid@cmovalves.com www.cmovalves.com

CMO VALVES FRANCE

5 chemin de la Brocardière F-69570 DARDILLY France

Tel.: (+33) 4 72 18 94 44

cmofrance@cmovalves.com www.cmovalves.com